Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Crit Care Med ; 2023 May 18.
Article in English | MEDLINE | ID: covidwho-2324563

ABSTRACT

OBJECTIVES: To determine the impact of high doses of corticosteroids (HDCT) in critically ill COVID-19 patients with nonresolving acute respiratory distress syndrome (ARDS) who had been previously treated with dexamethasone as a standard of care. DESIGN: Prospective observational cohort study. Eligible patients presented nonresolving ARDS related to severe acute respiratory syndrome coronavirus 2 infection and had received initial treatment with dexamethasone. We compared patients who had received or not HDCT during ICU stay, consisting of greater than or equal to 1 mg/kg of methylprednisolone or equivalent for treatment of nonresolving ARDS. The primary outcome was 90-day mortality. We assessed the impact of HDCT on 90-day mortality using univariable and multivariable Cox regression analysis. Further adjustment for confounding variables was performed using overlap weighting propensity score. The association between HDCT and the risk of ventilator-associated pneumonia was estimated using multivariable cause-specific Cox proportional hazard model adjusting for pre-specified confounders. SETTING: We included consecutive patients admitted in 11 ICUs of Great Paris area from September 2020 to February 2021. PATIENTS: Three hundred eighty-three patients were included (59 in the HDCT group, 324 in the no HDCT group). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: At day 90, 30 of 59 patients (51%) in the HDCT group and 116 of 324 patients (35.8%) in the no HDCT group had died. HDCT was significantly associated with 90-day mortality in unadjusted (hazard ratio [HR], 1.60; 95% CI, 1.04-2.47; p = 0.033) and adjusted analysis with overlap weighting (adjusted HR, 1.65; 95% CI, 1.03-2.63; p = 0.036). HDCT was not associated with an increased risk of ventilator-associated pneumonia (adjusted cause-specific HR, 0.42; 95% CI, 0.15-1.16; p = 0.09). CONCLUSIONS: In critically ill COVID-19 patients with nonresolving ARDS, HDCT result in a higher 90-day mortality.

2.
Sci Rep ; 13(1): 6658, 2023 04 24.
Article in English | MEDLINE | ID: covidwho-2302387

ABSTRACT

We aimed to explore the relationships between specific viral mutations/mutational patterns and ventilator-associated pneumonia (VAP) occurrence in COVID-19 patients admitted in intensive care units between October 1, 2020, and May 30, 2021. Full-length SARS-CoV-2 genomes were sequenced by means of next-generation sequencing. In this prospective multicentre cohort study, 259 patients were included. 222 patients (47%) had been infected with pre-existing ancestral variants, 116 (45%) with variant α, and 21 (8%) with other variants. 153 patients (59%) developed at least one VAP. There was no significant relationship between VAP occurrence and a specific SARS CoV-2 lineage/sublineage or mutational pattern.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Humans , SARS-CoV-2 , Cohort Studies , Prospective Studies , Critical Illness , COVID-19 Drug Treatment , Intensive Care Units , Dexamethasone , Mutation
3.
Sci Rep ; 13(1): 1902, 2023 02 02.
Article in English | MEDLINE | ID: covidwho-2221876

ABSTRACT

Vaccination reduces risk of infection, hospitalization, and death due to SARS-Cov2. Vaccinated patients may however experience severe SARS-Cov2 disease. The objective was to describe clinical features of vaccinated patients requiring intensive care unit (ICU) admission due to SARS-Cov2 infection and compare them to a published cohort of unvaccinated patients. We performed a multicenter cohort study of patients with severe SARS-Cov2 disease admitted to 15 ICUs in France between January and September 2021. 100 consecutive vaccinated patients (68 (68%) men, median age 64 [57-71]) were included. Immunosuppression was reported in 38 (38%) patients. Among available serologies at ICU admission, 64% exhibited an optimal antibody level. Median SOFA score at ICU admission was 4 [4-6.3] and median PaO2/FiO2 ratio was 84 [69-128] mmHg. A total of 79 (79%) and 18 (18%) patients received high flow nasal oxygen and non-invasive mechanical ventilation, respectively. Invasive mechanical ventilation (IMV) was initiated in 48 (48%) with a median duration of 11 [5-19] days. During a median ICU length-of-stay of 8 [4-20] days, 31 (31%) patients died. Age (OR per 5-years increment 1.38 CI95% [1.02-1.85], p = 0.035), and SOFA at ICU admission (OR 1.40 CI95% [1.14-1.72] per point, p = 0.002) were independently associated with mortality. When compared to a cohort of 1316 unvaccinated patients (72% men, median age 63 [53-71]), vaccinated patients exhibited less frequently diabetes (16 [16%] vs. 351 [27%], p = 0.029) but were more frequently immunosuppressed (38 [38%] vs. 109 (8.3%), p < 0.0001), had more frequently chronic kidney disease (24 [24%] vs. 89 (6.8%), p < 0.0001), chronic heart failure (16 [16%] vs. 58 [4.4%], p < 0.0001), and chronic liver disease (3 [3%] vs. 8 [0.6%], p = 0.037) compared to unvaccinated patients. Despite similar severity, vaccinated patients required less frequently IMV at ICU day 1 and during ICU stay (23 [23%] vs. 785 [59.7%], p < 0.0001, and 48 [48%] vs. 930 [70.7%], p < 0.0001, respectively). There was no difference concerning ICU mortality (31 [31%] vs. 379 [28.8%], p = 0.64). Severe SARS-Cov2 infection after vaccination occurs mainly in patients with immunosuppression, chronic kidney, heart or liver failure. Age and disease severity are independently associated with mortality.


Subject(s)
COVID-19 , Pneumonia , Male , Humans , Middle Aged , Child, Preschool , Female , RNA, Viral , SARS-CoV-2 , Cohort Studies , Intensive Care Units , Retrospective Studies
4.
J Clin Med ; 11(7)2022 Apr 05.
Article in English | MEDLINE | ID: covidwho-2216406

ABSTRACT

PURPOSE: Acute kidney injury (AKI) is common in patients with COVID-19, however, its mechanism is still controversial, particularly in ICU settings. Urinary proteinuria profile could be a non-invasive tool of interest to scrutinize the pathophysiological process underlying AKI in COVID-19 patients. MATERIAL AND METHODS: We conducted a retrospective study between March 2020 and April 2020. All patients with laboratory-confirmed COVID-19 and without end-stage kidney disease requiring renal replacement therapy before ICU admission were included. Our objectives were to assess the incidence and risk factors for AKI and to describe its clinical and biological characteristics, particularly its urinary protein profile. RESULTS: Seventy patients were included; 87% needed mechanical ventilation and 61% needed vasopressor during their ICU stay; 64.3% of patients developed AKI and half of them needed dialysis. Total and tubular proteinuria on day 1 were higher in patients with AKI, whereas glomerular proteinuria was similar in both groups. The main risk factor for AKI was shock at admission (OR = 5.47 (1.74-17.2), p < 0.01). Mortality on day 28 was higher in AKI (23/45, 51.1%) than in no-AKI patients (1/25, 4%), p < 0.001. Risk factors for 28-days mortality were AKI with need for renal replacement therapy, non-renal SOFA score and history of congestive heart failure. CONCLUSIONS: AKI is common in COVID-19 patients hospitalized in ICU; it seems to be related to tubular lesions rather than glomerular injury and is related to shock at ICU admission.

5.
Ann Intensive Care ; 12(1): 121, 2022 Dec 31.
Article in English | MEDLINE | ID: covidwho-2196445

ABSTRACT

BACKGROUND: Auto-antibodies (auto-Abs) neutralizing type I interferons (IFN) have been found in about 15% of critical cases COVID-19 pneumonia and less than 1% of mild or asymptomatic cases. Determining whether auto-Abs influence presentation and outcome of critically ill COVID-19 patients could lead to specific therapeutic interventions. Our objectives were to compare the severity at admission and the mortality of patients hospitalized for critical COVID-19 in ICU with versus without auto-Abs. RESULTS: We conducted a prospective multicentre cohort study including patients admitted in 11 intensive care units (ICUs) from Great Paris area hospitals with proven SARS-CoV-2 infection and acute respiratory failure. 925 critically ill COVID-19 patients were included. Auto-Abs neutralizing type I IFN-α2, ß and/or ω were found in 96 patients (10.3%). Demographics and comorbidities did not differ between patients with versus without auto-Abs. At ICU admission, Auto-Abs positive patients required a higher FiO2 (100% (70-100) vs. 90% (60-100), p = 0.01), but were not different in other characteristics. Mortality at day 28 was not different between patients with and without auto-Abs (18.7 vs. 23.7%, p = 0.279). In multivariable analysis, 28-day mortality was associated with age (adjusted odds ratio (aOR) = 1.06 [1.04-1.08], p < 0.001), SOFA score (aOR = 1.18 [1.12-1.23], p < 0.001) and immunosuppression (aOR = 1.82 [1.1-3.0], p = 0.02), but not with the presence of auto-Abs (aOR = 0.69 [0.38-1.26], p = 0.23). CONCLUSIONS: In ICU patients, auto-Abs against type I IFNs were found in at least 10% of patients with critical COVID-19 pneumonia. They were not associated with day 28 mortality.

7.
Nat Commun ; 13(1): 6025, 2022 10 12.
Article in English | MEDLINE | ID: covidwho-2062212

ABSTRACT

Infection with SARS-CoV-2 variant Omicron is considered to be less severe than infection with variant Delta, with rarer occurrence of severe disease requiring intensive care. Little information is available on comorbid factors, clinical conditions and specific viral mutational patterns associated with the severity of variant Omicron infection. In this multicenter prospective cohort study, patients consecutively admitted for severe COVID-19 in 20 intensive care units in France between December 7th 2021 and May 1st 2022 were included. Among 259 patients, we show that the clinical phenotype of patients infected with variant Omicron (n = 148) is different from that in those infected with variant Delta (n = 111). We observe no significant relationship between Delta and Omicron variant lineages/sublineages and 28-day mortality (adjusted odds ratio [95% confidence interval] = 0.68 [0.35-1.32]; p = 0.253). Among Omicron-infected patients, 43.2% are immunocompromised, most of whom have received two doses of vaccine or more (85.9%) but display a poor humoral response to vaccination. The mortality rate of immunocompromised patients infected with variant Omicron is significantly higher than that of non-immunocompromised patients (46.9% vs 26.2%; p = 0.009). In patients infected with variant Omicron, there is no association between specific sublineages (BA.1/BA.1.1 (n = 109) and BA.2 (n = 21)) or any viral genome polymorphisms/mutational profile and 28-day mortality.


Subject(s)
COVID-19 , SARS-CoV-2 , Critical Illness , Humans , Phenotype , Prospective Studies , SARS-CoV-2/genetics
8.
J Clin Med ; 11(15)2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-1969311

ABSTRACT

BACKGROUND: Diagnosis of co/superinfection in patients with Acute Respiratory Distress Syndrome (ARDS) is challenging. The FilmArray Pneumonia plus Panel (bioMérieux, France), a new rapid multiplex Polymerase Chain Reaction (mPCR), has never been assessed on a blinded protected telescope catheter (PTC) samples, a very common diagnostic tool in patients under mechanical ventilation. We evaluated the performance of mPCR on PTC samples compared with conventional culture and its impact on antibiotic stewardship. METHODS: Observational study in two intensive care units, conducted between March and July 2020, during the first wave of the COVID-19 pandemic in France. RESULTS: We performed 125 mPCR on blinded PTC samples of 95 ARDS patients, including 73 (77%) SARS-CoV-2 cases and 28 (29%) requiring extracorporeal membrane oxygenation. Respiratory samples were drawn from mechanically ventilated patients either just after intubation (n = 48; 38%) or later for suspected ventilator-associated pneumonia (VAP) (n = 77; 62%). The sensitivity, specificity, positive, and negative predictive values of mPCR were 93% (95% CI 84-100), 99% (95% CI 99-100), 68% (95% CI 54-83), and 100% (95% CI 100-100), respectively. The overall coefficient of agreement between mPCR and standard culture was 0.80 (95% CI 0.68-0.89). Intensivists changed empirical antimicrobial therapy in only 14% (18/125) of cases. No new antibiotic was initiated in more than half of the CAP/HAP pneumonia-suspected cases (n = 29; 60%) and in more than one-third of those suspected to have VAP without affecting or delaying their antimicrobial therapy. CONCLUSIONS: Rapid mPCR was feasible on blinded PTC with good sensitivity and specificity. New antibiotics were not initiated in more than half of patients and more than one-third of VAP-suspected cases. Further studies are needed to assess mPCR potential in improving antibiotic stewardship.

9.
Viruses ; 14(7)2022 07 13.
Article in English | MEDLINE | ID: covidwho-1939016

ABSTRACT

The SARS-CoV-2 variant of concern, α, spread worldwide at the beginning of 2021. It was suggested that this variant was associated with a higher risk of mortality than other variants. We aimed to characterize the genetic diversity of SARS-CoV-2 variants isolated from patients with severe COVID-19 and unravel the relationships between specific viral mutations/mutational patterns and clinical outcomes. This is a prospective multicenter observational cohort study. Patients aged ≥18 years admitted to 11 intensive care units (ICUs) in hospitals in the Greater Paris area for SARS-CoV-2 infection and acute respiratory failure between 1 October 2020 and 30 May 2021 were included. The primary clinical endpoint was day-28 mortality. Full-length SARS-CoV-2 genomes were sequenced by means of next-generation sequencing (Illumina COVIDSeq). In total, 413 patients were included, 183 (44.3%) were infected with pre-existing variants, 197 (47.7%) were infected with variant α, and 33 (8.0%) were infected with other variants. The patients infected with pre-existing variants were significantly older (64.9 ± 11.9 vs. 60.5 ± 11.8 years; p = 0.0005) and had more frequent COPD (11.5% vs. 4.1%; p = 0.009) and higher SOFA scores (4 [3-8] vs. 3 [2-4]; 0.0002). The day-28 mortality was no different between the patients infected with pre-existing, α, or other variants (31.1% vs. 26.2% vs. 30.3%; p = 0.550). There was no association between day-28 mortality and specific variants or the presence of specific mutations. At ICU admission, the patients infected with pre-existing variants had a different clinical presentation from those infected with variant α, but mortality did not differ between these groups. There was no association between specific variants or SARS-CoV-2 genome mutational pattern and day-28 mortality.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Critical Illness , Genomics , Humans , Prospective Studies , SARS-CoV-2/genetics
10.
Crit Care ; 26(1): 185, 2022 06 20.
Article in English | MEDLINE | ID: covidwho-1894496

ABSTRACT

BACKGROUND: Whether targeting the driving pressure (∆P) when adjusting the tidal volume in mechanically ventilated patients with the acute respiratory distress syndrome (ARDS) may decrease the risk of ventilator-induced lung injury remains a matter of research. In this study, we assessed the effect of a ∆P-guided ventilation on the mechanical power. METHODS: We prospectively included adult patients with moderate-to-severe ARDS. Positive end expiratory pressure was set by the attending physician and kept constant during the study. Tidal volume was first adjusted to target 6 ml/kg of predicted body weight (PBW-guided ventilation) and subsequently modified within a range from 4 to 10 ml/kg PBW to target a ∆P between 12 and 14 cm H2O. The respiratory rate was then re-adjusted within a range from 12 to 40 breaths/min until EtCO2 returned to its baseline value (∆P-guided ventilation). Mechanical power was computed at each step. RESULTS: Fifty-one patients were included between December 2019 and May 2021. ∆P-guided ventilation was feasible in all but one patient. The ∆P during PBW-guided ventilation was already within the target range of ∆P-guided ventilation in five (10%) patients, above in nine (18%) and below in 36 (72%). The change from PBW- to ∆P-guided ventilation was thus accompanied by an overall increase in tidal volume from 6.1 mL/kg PBW [5.9-6.2] to 7.7 ml/kg PBW [6.2-8.7], while respiratory rate was decreased from 29 breaths/min [26-32] to 21 breaths/min [16-28] (p < 0.001 for all comparisons). ∆P-guided ventilation was accompanied by a significant decrease in mechanical power from 31.5 J/min [28-35.7] to 28.8 J/min [24.6-32.6] (p < 0.001), representing a relative decrease of 7% [0-16]. With ∆P-guided ventilation, the PaO2/FiO2 ratio increased and the ventilatory ratio decreased. CONCLUSION: As compared to a conventional PBW-guided ventilation, a ∆P-guided ventilation strategy targeting a ∆P between 12 and 14 cm H2O required to change the tidal volume in 90% of the patients. Such ∆P-guided ventilation significantly reduced the mechanical power. Whether this physiological observation could be associated with clinical benefit should be assessed in clinical trials.


Subject(s)
Respiratory Distress Syndrome , Adult , Body Weight , Humans , Lung , Positive-Pressure Respiration , Respiration, Artificial , Respiratory Distress Syndrome/therapy , Tidal Volume/physiology
12.
Res Sq ; 2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1766249

ABSTRACT

SARS-CoV-2 infection fatality rate (IFR) doubles with every five years of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-ß are found in ~20% of deceased patients across age groups. In the general population, they are found in ~1% of individuals aged 20-70 years and in >4% of those >70 years old. With a sample of 1,261 deceased patients and 34,159 uninfected individuals, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to non-carriers. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRD was 17.0[95% CI:11.7-24.7] for individuals under 70 years old and 5.8[4.5-7.4] for individuals aged 70 and over, whereas, for autoantibodies neutralizing both molecules, the RRD was 188.3[44.8-774.4] and 7.2[5.0-10.3], respectively. IFRs increased with age, from 0.17%[0.12-0.31] for individuals <40 years old to 26.7%[20.3-35.2] for those ≥80 years old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84%[0.31-8.28] to 40.5%[27.82-61.20] for the same two age groups, for autoantibodies neutralizing both molecules. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, particularly those neutralizing both IFN-α2 and -ω. Remarkably, IFR increases with age, whereas RRD decreases with age. Autoimmunity to type I IFNs appears to be second only to age among common predictors of COVID-19 death.

13.
Research in Diagnostic and Interventional Imaging ; 1:1-5, 2022.
Article in English | ScienceDirect | ID: covidwho-1671093

ABSTRACT

Purpose To evaluate and compare the prevalence and type of abdominal involvements identified on CT scans in COVID-19 critically ill patients to those observed in critically ill patients with non-SARS-CoV-2 viral pneumonia. Methods Monocentric IRB approved retrospective study comparing all abdominal CT scans performed for patients admitted in the ICU with COVID-19 and those performed in a historical cohort of ICU patients with non-SARS-CoV-2 viral pneumonia. For each patient, gallbladder abnormality, acute pancreatitis signs, acute adrenal infarction, renal infarcts, bowel wall thickening and CT scan signs of bowel ischemia were assessed. Results were then compared between critically ill COVID-19 and non-COVID-19 patients (Chi-2 or Fisher exact tests for categorical data and Student t-test or Mann-Whitney U test for continuous data as appropriate). Results Ninety-nine COVID-19 patients and 45 non-COVID-19 patients were included. No difference was found between the rate of abnormal findings comparing COVID-19 patients and patients with other viral pneumonia (63/99 [64%] vs 27/45 [61%], p=0.94). Acute pancreatitis signs were more commonly seen in COVID-19 patients but without statistically difference between groups (14/99 [14%] vs 3/45 [6.7%], p=0.31). Bowel wall thickening was slightly more commonly seen in patients with other viral pneumonia (18/99 [18%] vs 11/45 [24%], p=0.52), however ischemic features were observed in higher rate in the COVID-19 group, although without reaching statistically significant differences (7/99 [7.1%] vs 2/45 [4.4%], p=0.75). Conclusion The rate and severity of abdominal involvement demonstrated by CT in ICU patients hospitalized for COVID-19 although high were not different to that observed in patients with other severe viral pneumoniae

14.
Lancet Respir Med ; 10(2): 180-190, 2022 02.
Article in English | MEDLINE | ID: covidwho-1537209

ABSTRACT

BACKGROUND: Patients with severe COVID-19 have emerged as a population at high risk of invasive fungal infections (IFIs). However, to our knowledge, the prevalence of IFIs has not yet been assessed in large populations of mechanically ventilated patients. We aimed to identify the prevalence, risk factors, and mortality associated with IFIs in mechanically ventilated patients with COVID-19 under intensive care. METHODS: We performed a national, multicentre, observational cohort study in 18 French intensive care units (ICUs). We retrospectively and prospectively enrolled adult patients (aged ≥18 years) with RT-PCR-confirmed SARS-CoV-2 infection and requiring mechanical ventilation for acute respiratory distress syndrome, with all demographic and clinical and biological follow-up data anonymised and collected from electronic case report forms. Patients were systematically screened for respiratory fungal microorganisms once or twice a week during the period of mechanical ventilation up to ICU discharge. The primary outcome was the prevalence of IFIs in all eligible participants with a minimum of three microbiological samples screened during ICU admission, with proven or probable (pr/pb) COVID-19-associated pulmonary aspergillosis (CAPA) classified according to the recent ECMM/ISHAM definitions. Secondary outcomes were risk factors of pr/pb CAPA, ICU mortality between the pr/pb CAPA and non-pr/pb CAPA groups, and associations of pr/pb CAPA and related variables with ICU mortality, identified by regression models. The MYCOVID study is registered with ClinicalTrials.gov, NCT04368221. FINDINGS: Between Feb 29 and July 9, 2020, we enrolled 565 mechanically ventilated patients with COVID-19. 509 patients with at least three screening samples were analysed (mean age 59·4 years [SD 12·5], 400 [79%] men). 128 (25%) patients had 138 episodes of pr/pb or possible IFIs. 76 (15%) patients fulfilled the criteria for pr/pb CAPA. According to multivariate analysis, age older than 62 years (odds ratio [OR] 2·34 [95% CI 1·39-3·92], p=0·0013), treatment with dexamethasone and anti-IL-6 (OR 2·71 [1·12-6·56], p=0·027), and long duration of mechanical ventilation (>14 days; OR 2·16 [1·14-4·09], p=0·019) were independently associated with pr/pb CAPA. 38 (7%) patients had one or more other pr/pb IFIs: 32 (6%) had candidaemia, six (1%) had invasive mucormycosis, and one (<1%) had invasive fusariosis. Multivariate analysis of associations with death, adjusted for candidaemia, for the 509 patients identified three significant factors: age older than 62 years (hazard ratio [HR] 1·71 [95% CI 1·26-2·32], p=0·0005), solid organ transplantation (HR 2·46 [1·53-3·95], p=0·0002), and pr/pb CAPA (HR 1·45 [95% CI 1·03-2·03], p=0·033). At time of ICU discharge, survival curves showed that overall ICU mortality was significantly higher in patients with pr/pb CAPA than in those without, at 61·8% (95% CI 50·0-72·8) versus 32·1% (27·7-36·7; p<0·0001). INTERPRETATION: This study shows the high prevalence of invasive pulmonary aspergillosis and candidaemia and high mortality associated with pr/pb CAPA in mechanically ventilated patients with COVID-19. These findings highlight the need for active surveillance of fungal pathogens in patients with severe COVID-19. FUNDING: Pfizer.


Subject(s)
COVID-19 , Pulmonary Aspergillosis , Adolescent , Adult , Child, Preschool , Humans , Intensive Care Units , Male , Middle Aged , Respiration, Artificial , Retrospective Studies , SARS-CoV-2
15.
Sci Immunol ; 6(62)2021 08 19.
Article in English | MEDLINE | ID: covidwho-1434875

ABSTRACT

Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/mL, in plasma diluted 1 to 10) of IFN-α and/or -ω are found in about 10% of patients with critical COVID-19 pneumonia, but not in subjects with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-α and/or -ω (100 pg/mL, in 1/10 dilutions of plasma) in 13.6% of 3,595 patients with critical COVID-19, including 21% of 374 patients > 80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1,124 deceased patients (aged 20 days-99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-ß. We also show, in a sample of 34,159 uninfected subjects from the general population, that auto-Abs neutralizing high concentrations of IFN-α and/or -ω are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of subjects carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals <70 years, 2.3% between 70 and 80 years, and 6.3% >80 years. By contrast, auto-Abs neutralizing IFN-ß do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over-80s, and total fatal COVID-19 cases.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Interferon Type I/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Autoantibodies/blood , COVID-19/mortality , Case-Control Studies , Child , Child, Preschool , Critical Illness , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Infant , Infant, Newborn , Interferon-alpha/immunology , Middle Aged , Young Adult
19.
Allergy ; 77(2): 595-608, 2022 02.
Article in English | MEDLINE | ID: covidwho-1280270

ABSTRACT

BACKGROUND: Coronavirus disease-2019 (COVID-19) has been associated with cutaneous findings, some being the result of drug hypersensitivity reactions such as maculopapular drug rashes (MDR). The aim of this study was to investigate whether COVID-19 may impact the development of the MDR. METHODS: Blood and skin samples from COVID-19 patients (based on a positive nasopharyngeal PCR) suffering from MDR (COVID-MDR), healthy controls, non-COVID-19-related patients with drug rash with eosinophilia and systemic symptoms (DRESS), and MDR were analyzed. We utilized imaging mass cytometry (IMC) to characterize the cellular infiltrate in skin biopsies. Furthermore, RNA sequencing transcriptome of skin biopsy samples and high-throughput multiplexed proteomic profiling of serum were performed. RESULTS: IMC revealed by clustering analyses a more prominent, phenotypically shifted cytotoxic CD8+ T cell population and highly activated monocyte/macrophage (Mo/Mac) clusters in COVID-MDR. The RNA sequencing transcriptome demonstrated a more robust cytotoxic response in COVID-MDR skin. However, severe acute respiratory syndrome coronavirus 2 was not detected in skin biopsies at the time point of MDR diagnosis. Serum proteomic profiling of COVID-MDR patients revealed upregulation of various inflammatory mediators (IL-4, IL-5, IL-6, TNF, and IFN-γ), eosinophil and Mo/Mac -attracting chemokines (MCP-2, MCP-3, MCP-4 and CCL11). Proteomics analyses demonstrated a massive systemic cytokine storm in COVID-MDR compared with the relatively milder cytokine storm observed in DRESS, while MDR did not exhibit such features. CONCLUSION: A systemic cytokine storm may promote activation of Mo/Mac and cytotoxic CD8+ T cells in severe COVID-19 patients, which in turn may impact the development of MDR.


Subject(s)
COVID-19 , Exanthema , Pharmaceutical Preparations , CD8-Positive T-Lymphocytes , Humans , Proteomics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL